Host-Pathogen Interaction Session

Bioinformatics Resource Center (BRC) for Biodefense and Emerging/Re-emerging Infectious Diseases Kick-Off Meeting - 130CT2004

Switch Gears

- Start to think beyond the organism in isolation
- · Start to think beyond the genomic sequence data
- Start to think about experimental problems from the viewpoint of the user (use cases)

Goal of Session

Assuming we agree that BRCs should be a combination of informational web site/research database/data mining & analytical resource

- •To begin to define the kinds of data that contribute to an understanding of the host/pathogen interaction
- •To begin to define the kinds of analytical and data mining approaches that are useful in understanding the host/pathogen interaction
- •To begin to define the computational structure that should be used to support research aimed at understanding the host/pathogen interaction
- •To identify BRC representatives who would <u>form a working group (HPWG)</u> for the development of a computational framework that can support host/pathogen interaction data during the life of the BRC contract

Approach

- Identify key concepts/problems relevant to this research community
- Define experiments used to address the key concepts/problems
- Define components of experiments
- Describe the analytical process used to infer knowledge from the experiments

PopGen Program

- Study at McMaster University by Mark Loeb
- Goal is to map genes related to disease severity in patients infected with West Nile Virus in US
- Specific Aim is to analyze genetic polymorphisms (SNPs) in a large number of immunerelated genes (HLA, cytokines, chemokines, signaling proteins, transcription factors, etc.)
- Sample set 1200 cases with encephalitis, meningitis, acute flaccid paralysis & 1200 cases who were infected but did not develop neuroinvasive disease
- Example of a study to define *host susceptibility*

Define use case

Use case example.doc

Data to support experimental design

- dbSNP
- Clinical data
 - Patient demographics
 - Patient medical history
 - Physical exam
 - Diagnostic laboratory tests

Genetic markers (SNP)

Realtime PCR raw data

Data Processing Tool

SNP Haplotype Table

SNP haplotype table.xls

Chromosome view

High resolution view

High Resolution Physical Map of Human Chromosome 7

Summary

- Host-pathogen concepts
 - Disease susceptibility
 - Clinical manifestations
- Data types
 - Experimental design
 - Gene annotation
 - SNP information
 - HLA information
 - Clinical information
 - Experimental data
 - Raw data (Ct values)
 - Processed data (Chi-squared p value)
- Data analysis
 - PCR data processing
 - Association statistics
- Data interpretation
 - Disease association and linked genes

Identification of the key concepts relevant to the hostpathogen interactions

- Virulence Determinants
 - Genes
 - Mechanisms of action
- Host Susceptibility
 - Genes and their functions
 - Non-genetic factors
- Combination genetics host susceptibility combined with pathogen virulence (donor-recipient tissue typing paradigm)
- Host/pathogen factor interactions
- Ontology development (know when to stop!)
 - From the perspective of the experiments
 - Things you measure vs interpretation
- Immune Response
- Pathogenic Epitopes
- Vaccine Development
- Role of vector
- Disease Pathogenesis/Host response
 - Clinical manifestations of infection
 - Physiological manifestations of infection
 - Cellular manifestations of infection
 - Molecular manifestations of infection
- Transmission
- Epidemiology (MIDAS)
- Therapeutic Intervention
- Drug Resistance
- Diagnostic targets

Session

- A. With the key concepts defined, what kinds of experimental designs, approaches, and methodologies are used to investigate these concepts?
- B. Can these various experimental approaches be described using a common data structure?
- C. What is the nature of the results data generated from these experiments?
- D. Can the experimental results be described using a common data structure?
- E. What is the nature of the data analysis applied to the experimental results?
- F. Can the analytical process be described using a common data structure?
- G. What is the nature of the biological knowledge inferred from the analysis of the experimental data?
- H. Can the inferred knowledge be described using a common data structure?

Ontology

- A. Discuss the importance of using a common ontology for the BRC project
- B. Discuss the relationship between the ontology and the data model
- C. Discuss if an existing ontology would meet the needs related to host/pathogen interactions, e.g. GeneOntology, NCI Thesaurus, SNOMED, etc.